If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y^2=247
We move all terms to the left:
y^2+y^2-(247)=0
We add all the numbers together, and all the variables
2y^2-247=0
a = 2; b = 0; c = -247;
Δ = b2-4ac
Δ = 02-4·2·(-247)
Δ = 1976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1976}=\sqrt{4*494}=\sqrt{4}*\sqrt{494}=2\sqrt{494}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{494}}{2*2}=\frac{0-2\sqrt{494}}{4} =-\frac{2\sqrt{494}}{4} =-\frac{\sqrt{494}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{494}}{2*2}=\frac{0+2\sqrt{494}}{4} =\frac{2\sqrt{494}}{4} =\frac{\sqrt{494}}{2} $
| 12x=13=7x+7 | | 1=b/5-1 | | 6x-4x=2x+4 | | 2/3(t-6)+1=5 | | -2(3w-2)+2w=5(w+2) | | 7y+15–8=56 | | 8+5t=-7 | | 5y+8=8y-13 | | 5x-17=2x+22 | | 4/5x+7=11 | | 39.2r=316 | | 8r=12r+20 | | 2=4x37 | | 321x=57+ | | 6z+12=8+5z | | 7x+18+16x-27=180 | | 5x+3(x-7)=32 | | 8y=2+5y | | -20/x+3=2x | | (2x-4)/5+8/5=3(x-1) | | 8x+15=2x+1 | | (x-2)^2=11 | | 1/2(6x-18)=-x-9 | | 1.8+6n-3.2=-142 | | 12+4p=18.40 | | 2x+37+4x+7=180 | | -3(u-4)=-6u+21 | | -83=17-2x | | x−2.7=2x+2.7+x | | 8+n÷3=-3 | | 34-2x=3x+19 | | 4x+(2x-10)=140 |